Intel prezentuje czip o prędkosci 1TB/s
W każdym z sześciu rdzeniów PIUMA mieści się po sześcdziesiąt sześć wątków, co umożliwia przetwarzanie danych z szybkością 1 terabajta na sekundę. Czip zużywa jedynie 75W energii, przy czym jedynie 59% z tego przypada na wykorzystywane silikonowe połączenia optyczne, 21% zaś na rdzenie. Wykorzystano procesor o rozmiarze bramki 7nm wykonany w technice FinFET (ang. fin field-effect transistor) przez tajwańskiego monopolistę TSMC (ang. Taiwan Semiconductor Manufacoring Company Limited) ze standardowym interfejsem Ball Grid Array (BGA).
Dane przesyłane są z wykorzystaniem krzemowych chipletów fotonicznych, za których wykonanie odpowiada Ayar Labs. Cztery chiplety przeksztalcają sygnały elektryczne przechodzące przez mikroprocesor na sygnały optyczne przenoszone przez 32 światłowody jednomodowe. Każde włókno przesyła dane z szybkością 32 GB/s, co daje maksymalną przepustowość 1 TB/s. Zwisające z boków czipa złącza fotoniczne umożliwiają połączenia z innymi czipami. Zewnętrzna siec optyczna Hyper X zapewnia połączenia typu „wszystko ze wszystkim” (ang. all-to-all connections) dla każdego z rdzeni przetwarzających. Możliwe jest połączenie w ten sposób do dwóch milionów rdzeni z opóźnieniem poniżej 400 nanosekund.
W porównaniu do wykorzystywanej przez Intel od lat 1970. architektury zestawu instrukcji (ang. Instruction Set Architecture, ISA) x86, PIUMA wykorzystuje architekturę komputera o zmniejszonym zestawie instrukcji (ang. Reduced Instruction Set Computer, RISC), która nie napotyka takich problemów ze skalowaniem jak x86 oraz, lepiej nadając się do przetwarzania równoległego, jest bardziej energooszczędna i osiąga ośmiokrotnie lepszą wydajność w trybie jednowątkowym w zadaniach określonych przez DARPA.
Perspektywa optycznych interkonektorów mesh-to-mesh napędza badania prowadzone przez NVIDIA, Intel i Ayar Labs, dążące do osiągnięcia rozwiązań które mogłyby być wdrożone na dużą skalę. Potentaci widzą w interkonektorach optycznych nową technikę przesyłu danych, oferującą większą przepustowość, mniejsze opóźnienia i mniejsze zużycie energii w porównaniu do tradycyjnych technik przesyłu danych chip-to-chip.
Ronald Lasecki